📌Какой вектор лучше: Dense vs Multi-vector embeddings
Раньше хватало одного эмбеддинга на документ. Сейчас — этого уже мало. Нужна структура.
📍Dense-векторы (single vector per doc): — быстрые — экономные по памяти — слабо улавливают контекст — «плавают» при сложных запросах 👉 подходят для простого поиска
📍Multi-vector (late interaction): — вектор на каждый токен — сравниваются токены запроса и документа напрямую — лучше качество на сложных задачах — выше требования к хранилищу 👉 баланс между скоростью и точностью
📍Late interaction ≈ золотая середина: — быстрее, чем cross-encoders — точнее, чем dense-векторы
📍Примеры моделей: — ColBERT — для текстов — ColPali — multimodal: текст + PDF как картинки — ColQwen — как ColPali, но на Qwen2 (Apache 2.0, компактнее)
Если вы работаете с PDF-документами (таблицы, графики, изображения) — мультивекторные модели решают большинство проблем без «чaнкинга» и костылей.
📌Какой вектор лучше: Dense vs Multi-vector embeddings
Раньше хватало одного эмбеддинга на документ. Сейчас — этого уже мало. Нужна структура.
📍Dense-векторы (single vector per doc): — быстрые — экономные по памяти — слабо улавливают контекст — «плавают» при сложных запросах 👉 подходят для простого поиска
📍Multi-vector (late interaction): — вектор на каждый токен — сравниваются токены запроса и документа напрямую — лучше качество на сложных задачах — выше требования к хранилищу 👉 баланс между скоростью и точностью
📍Late interaction ≈ золотая середина: — быстрее, чем cross-encoders — точнее, чем dense-векторы
📍Примеры моделей: — ColBERT — для текстов — ColPali — multimodal: текст + PDF как картинки — ColQwen — как ColPali, но на Qwen2 (Apache 2.0, компактнее)
Если вы работаете с PDF-документами (таблицы, графики, изображения) — мультивекторные модели решают большинство проблем без «чaнкинга» и костылей.
In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.
The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.
Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from it